Java学习者论坛

 找回密码
 立即注册

QQ登录

只需一步,快速开始

手机号码,快捷登录

恭喜Java学习者论坛(www.javaxxz.com)已经为数万Java学习者服务超过7年了!积累会员资料超过10000G+
成为本站VIP会员,下载本站10000G+会员资源,购买链接:http://item.taobao.com/item.htm?id=44171550842
成为荣耀会员,分享5TB资料及站长学习指导,购买链接:https://item.taobao.com/item.htm?id=44435180049
资料售前:点击这里给我发消息 资料售后:点击这里给我发消息 ①群:Java学习者群②javaxxz.com ②群:Java学习者群③javaxxz.com 求职招聘群:Java求职与招聘 精英群:Java学习者精英群
JavaEE 49期就业班视频教程2019最新 JavaEE 57期 入门到项目实战

最新微服务架构实战160讲教程

Go语言视频零基础入门到精通

Java从菜鸟到大神的学习路线之实战篇

Java开发全终端实战租房项目视频教程

SpringBoot2.X入门到高级使用教程

大数据培训第六期全套视频教程

深度学习(CNN RNN GAN)算法原理

Java亿级流量电商系统视频教程

互联网架构师视频教程

年薪50万Spark2.0从入门到精通

年薪50万!人工智能学习路线教程

年薪50万!大数据从入门到精通学习路线年薪50万!机器学习入门到精通视频教程
查看: 307|回复: 32

【No773】2019年最新商业数据分析特训班视频教程

[复制链接]
  • TA的每日心情
    开心
    2018-8-25 14:10
  • 签到天数: 222 天

    [LV.7]常住居民III

    发表于 2019-10-24 17:41:11 | 显示全部楼层 |阅读模式

    资源名称:

    【No773】2019年最新商业数据分析特训班视频教程

    下载地址:

    网盘链接:请先登录后查看此内容

    失效声明:

    如果资料失效,VIP和荣耀会员或者使用金币兑换的普通会员,可以直接联系资料客服索取:点击这里给我发消息。在线时间为:8:00-23:30。请下载后24小时内删除,若侵权请联系客服删除该资料。

    如何获取:

    1,本资料VIP会员、荣耀会员网盘链接直接可见,购买VIP:点我进入淘宝购买页面>>>,购买荣耀会员:点我进入淘宝购买页面>>>。荣耀会员可以加站长QQ提供技术指导和学习帮助。
    2,非荣耀会员使用50000Java金币兑换,淘宝购买卡密充值(拍需5个):点我进入淘宝购买页面>>>

    资源描述及截图:

    1.1商业数据分析引入.mp4
    1.2什么是商业数据分析?.mp4
    1.3所需技能.mp4
    1.4基本分析流程及供应链各个环节.mp4
    1.5商业理解.mp4
    1.6答疑(一).mp4
    1.7数据粒度(一).mp4
    1.8数据粒度(二).mp4
    1.9数据粒度(三).mp4
    1.10数据粒度(四).mp4
    1.11答疑(二).mp4
    1.12答疑(三).mp4
    1.13答疑(四).mp4
    2.1数据质量与形式.mp4
    2.2数据隐性.mp4
    2.3案例分析.mp4
    2.4不同类型的分析.mp4
    2.5数据可视化.mp4
    2.6典型数据驱动开发团队的人员.mp4
    2.7答疑.mp4
    3.1Excel简介.mp4
    3.2Excel基本操作(一).mp4
    3.3Excel基本操作(二).mp4
    3.4Excel基本操作(三).mp4
    3.5行列及区域(一).mp4
    3.6行列及区域(二).mp4
    3.7数据及数据类型(一).mp4
    3.8数据及数据类型(二).mp4
    3.9数据及数据类型(三).mp4
    3.10查找和替换(一).mp4
    3.11查找和替换(二).mp4
    3.12答疑.mp4
    4.1答疑回顾.mp4
    4.2排序.mp4
    4.3排序插入.mp4
    4.4筛选(一).mp4
    4.5筛选(二).mp4
    4.6答疑.mp4
    5.1分类汇总(一).mp4
    5.2分类汇总(二).mp4
    5.3公式与函数(一).mp4
    5.4公式与函数(二).mp4
    5.5公式与函数(三).mp4
    5.6逻辑判断IF(一).mp4
    5.7逻辑判断IF(二).mp4
    5.8COUNTIF.mp4
    5.9重复.mp4
    5.10报名统计.mp4
    5.11SUMIF.mp4
    5.12SUMIF练习.mp4
    6.1VLOOKUP.mp4
    6.2菜单、Join Two Tables.mp4
    6.3记录多匹配、跨表.mp4
    6.4跨表、跨文件薄.mp4
    6.5示例:王者荣耀、打标签.mp4
    6.6文本vlookup、Hlookup.mp4
    6.7Match&Index.mp4
    6.8返回多列.mp4
    6.9认识数组、记录多匹配.mp4
    7.1商务智能含义(一).mp4
    7.2商务智能含义(二).mp4
    7.3数据仓库系统.mp4
    7.4常见BI.mp4
    7.5Power BI(一).mp4
    7.6Power BI(二).mp4
    7.7答疑.mp4
    8.1python基础课程.mp4
    8.2Python能做什么.mp4
    8.3Python20载.mp4
    8.4Python简单介绍.mp4
    8.5工具安装及环境配置(一).mp4
    8.6工具安装及环境配置(二).mp4
    8.7计算机与程序思维.mp4
    8.8Jupyter notebook(一).mp4
    8.9Jupyter notebook(二).mp4
    8.10Python for basic data type(一).mp4
    8.11Python for basic data type(二).mp4
    8.12Python for basic data type(三).mp4
    8.13Python for basic data type(四).mp4
    8.14Python for basic data type(五).mp4
    8.15Python for basic data type(六).mp4
    8.16Python for basic data type(七).mp4
    8.17Python for basic data type(八).mp4
    9.1答疑.mp4
    9.2Python for basic data type(一).mp4
    9.3Python for basic data type(二).mp4
    9.4Quiz—字符串.mp45 B, B0 u' h0 J
    9.5Python Code Structure.mp4
    9.6While Loop.mp4
    9.7For Loop.mp4
    9.8王者荣耀case function(一).mp4
    9.9王者荣耀case function(二).mp4
    9.10王者荣耀case function(三).mp4
    9.11Quiz—基本语法及变量.mp4
    9.12Way to Function(一).mp4
    9.13Way to Function(二).mp4
    9.14Quiz—Code Structure(一).mp4
    9.15Quiz—Code Structure(二).mp4
    9.16Python basic data structure(一).mp4
    9.17Python basic data structure(二).mp4
    9.18Python basic data structure(三).mp4
    10.1答疑—strip的功能.mp4
    10.2List(一).mp4
    10.3List(二).mp4
    10.4List(三).mp4
    10.5Tuple.mp4
    10.6Dictionary(一).mp4
    10.7答疑回顾.mp4
    10.8Dictionary(二).mp4
    10.9Set.mp4
    10.10Zip.mp4
    10.11Mutable,Immutable.mp4
    10.12Traversal Sequence Data Structure.mp4
    10.13函数进阶(一).mp4
    10.14函数进阶(二).mp4
    10.15函数也可以传递、Lambda.mp4
    10.16修饰.mp4
    10.17List Comprehensions(一).mp4
    10.18List Comprehensions(二).mp4
    11.1Modules,Packages,and Programs(一).mp4
    11.2Modules,Packages,and Programs(二).mp4
    11.3Python Standard Library.mp4
    11.4Python System(一).mp4
    11.5Python System(二).mp4
    11.6Python System(三).mp4
    11.7Python System(四).mp4
    11.8Advanced Python(一).mp4
    11.9Advanced Python(二).mp4
    11.10Advanced Python(三).mp4
    11.11Advanced Python(四).mp4
    12.1计算机网络基础.mp4
    12.2网站.mp4
    12.3示例分析.mp4
    12.4知识回顾及预习.mp4
    12.5HTML,CSS,Browser(一).mp4
    12.6HTML,CSS,Browser(二).mp4
    12.7Crawl—BOSS直聘(一).mp4
    12.8Crawl—BOSS直聘(二).mp4
    12.9Crawl—BOSS直聘(三).mp4
    12.10Crawl—BOSS直聘(四).mp4
    12.11Crawl—BOSS直聘(五).mp4
    12.12Crawl—BOSS直聘(六).mp4
    12.13作业:英雄列表整合(一).mp4
    12.14作业:英雄列表整合(二).mp4
    12.15作业:英雄列表整合(三).mp4
    13.1课程简述及小测试.mp4
    13.2自然科学vs数学.mp4
    13.3随机试验.mp4
    13.4古典概型(一).mp4
    13.5古典概型(二).mp4
    13.6条件概率.mp4
    13.7贝叶斯公式(一).mp4
    13.8贝叶斯公式(二).mp4
    13.9独立性.mp4
    14.1随机变量.mp4
    14.20-1分布和伯努利实验(一).mp4
    14.3伯努利实验例题讲解(一).mp4
    14.4伯努利实验例题讲解(二).mp4
    14.5随机变量分布函数(一).mp4
    14.6随机变量分布函数(二).mp4
    14.7随机变量分布函数(三).mp4
    14.8随机变量分布函数(四).mp4
    14.9随机变量分布函数(五).mp4
    15.1分布函数例题及贝叶斯公式回顾.mp4
    15.2贝叶斯公式例题(一).mp4
    15.3贝叶斯公式例题(二).mp4
    15.4贝叶斯定理思想归纳.mp4
    15.5贝叶斯定理应用总结及分布函数.mp4
    15.6正态分布例题讲解(一).mp4
    15.7正态分布例题讲解(二).mp4
    15.8离散型分布函数.mp4
    15.9连续型分布函数.mp4
    15.10正态分布例题讲解(三).mp4
    16.1离散型分布函数的数学期望.mp4
    16.2连续型分布函数的数学期望.mp4
    16.3例题讲解(一).mp4
    16.4例题讲解(二).mp4
    16.5例题讲解(三).mp4
    16.6正态分布的标准差定义.mp4
    16.7数学期望及例题讲解.mp4
    16.8方差及例题讲解.mp4
    17.1二维随机变量(一).mp4
    17.2二维随机变量(二).mp4
    17.3二维随机变量(三).mp4
    17.4N维随机变量(一).mp4
    17.5N维随机变量(二).mp4
    17.6中心极限定理(一).mp4
    17.7中心极限定理(二).mp4
    17.8随机样本与箱线图.mp4
    17.9SPSS数据分析.mp4
    18.1T检验理论推导和前提.mp4
    18.2单样本t检验(一).mp4
    18.3单样本t检验(二).mp4
    18.4独立样本t检验(一).mp4
    18.5独立样本t检验(二).mp4
    18.6配对样本t检验(一).mp4
    18.7配对样本t检验(二).mp4
    18.8方差分析.mp4
    18.9单因素方差分析(一).mp4
    18.10单因素方差分析(二).mp4
    18.11两因素方差分析.mp4
    18.12卡方检验(一).mp4
    18.13卡方检验(二).mp4
    18.14卡方检验(三).mp4
    18.15简单线性回归(一).mp4
    18.16简单线性回归(二).mp4
    19.1NumPy简单介绍.mp4
    19.2创建矩阵(一).mp4
    19.3创建矩阵(二).mp4
    19.4算术操作和矩阵计算.mp4
    19.5Several Useful Operations.mp4
    19.6一维矩阵.mp4
    19.7多维矩阵(一).mp4
    19.8多维矩阵(二).mp4
    19.9Generate Grid、NumPy where function.mp4
    19.10统计、排序和存储array.mp4
    19.11Pandas简单介绍和Series.mp4
    19.12Series.mp4
    19.13DataFrame.mp4
    19.14Titanic example.mp4
    19.15Index object、Reindex.mp4
    19.16Drop Data、Slice Data.mp4
    19.17Data Alignment、Rank and Sort.mp4
    20.1数据可视化引入(一).mp4
    20.2数据可视化引入(二).mp4
    20.3什么是Data Visualization.mp4
    20.4Matplotlib简单介绍.mp4
    20.5Data-ink ratio.mp4
    20.6一次性画图和重复性画图的关系.mp4
    20.7Matplotlib及其元素.mp4
    20.8Mode.mp4
    20.9Basic elements及画图介绍.mp4
    20.10Data-ink ratio举例(一).mp4
    20.11Data-ink ratio举例(二).mp4
    20.12Seaborn:Regression plot.mp4
    20.13Bar plot、FacetGrid.mp4
    20.14Pair Plot、Joint Plot与Line Plot.mp4
    20.15Plotly(一).mp4
    20.16Plotly(二).mp4
    21.1数据透视表课程引入.mp4
    21.2观察数据及创建数据透视表.mp4
    21.3透视表简单练习.mp4
    21.4如何设置数据透视表的格式、风格.mp4
    21.5报表布局、分类汇总、总计.mp4
    21.6排序与筛选(一).mp4
    21.8刷新、更改数据源.mp4
    21.7排序与筛选(二).mp4
    21.9切片器操作及简单练习.mp4
    21.10切片器连接多个数据透视表.mp4
    21.11分组.mp4
    21.12设置数值计算方式与自定义计算项.mp4
    21.13例题练习.mp4
    22.1课前回顾.mp4
    22.2柱状图(一).mp4
    22.3柱状图(二).mp4
    22.4柱状图(三).mp4
    22.5柱状图(四).mp4
    22.6饼状图、线状图.mp4
    22.7图表结合.mp4
    22.8数据透视图(一).mp4
    22.9数据透视图(二).mp4
    22.10饼状图答疑.mp4
    22.11练习(一).mp4
    22.12练习(二).mp4
    22.13练习(三).mp4
    22.15练习(五).mp4
    22.14练习(四).mp4
    23.1课前回顾.mp4
    23.2mini图和时间轴.mp4
    23.3数据仪表盘示例及创建仪表盘的步骤.mp4
    23.4创建仪表盘的注意事项与演示.mp4
    23.5创建数据仪表盘:观察整理数据.mp4
    23.6建立数据透视表和图表(一).mp4
    23.7建立数据透视表和图表(二).mp4
    23.8建立数据透视表和图表(三).mp4
    23.9建立数据透视表和图表(四).mp4
    23.10创建Dashboard(一).mp4
    23.11创建Dashboard(二).mp4
    23.12创建Dashboard(三).mp4
    23.13课程内容回顾(一).mp4
    23.14课程内容回顾(二).mp4
    24.1商业数据分析的驱动力.mp4
    24.2什么是商业数据分析(一).mp4
    24.3什么是商业数据分析(二).mp4
    24.4不同部门的应用场景及流程综述.mp4
    24.5市场推广数据分析(一).mp4
    24.6市场推广数据分析(二).mp4
    24.7新业务开发.mp4
    24.8销售管理和其他应用场景.mp4
    24.9不同行业的应用场景及答疑.mp4
    24.10金融数据分析与人力资源数据分析.mp4
    24.11医疗健康数据分析.mp4
    24.12供应链数据分析与体育数据分析.mp4
    24.13互联网数据分析.mp4
    24.14数据清理—数据分析前必不可少的步骤.mp4
    24.15Case 1:数据质量控制(一).mp4
    24.16Case 1:数据质量控制(二).mp4
    24.17数据分析流程及分类.mp4
    24.18描述性、预测性、指导性数据分析.mp4
    24.19Case 2:如何使用数据解答商业问题.mp4
    24.20答疑及大数据简述.mp4
    25.1市场漏斗模型Marketing Funnel(一).mp4
    25.2市场漏斗模型Marketing Funnel(二).mp4
    25.3Samples.mp4
    25.4Marketing vs Marketing Analytics(一).mp4
    25.5Marketing vs Marketing Analytics(二).mp4
    25.6Marketing Analytics(一).mp4
    25.7Marketing Analytics(二).mp4
    25.8Segmentation及举例.mp4
    25.9Acquisition Model与Analytics Cycle.mp4
    25.10Marketing Analytics Landscape及答疑.mp4
    25.11Marketing Mix Model.mp4
    25.12MMM模型例题分析.mp4
    25.13市场反应度、线性模型及指数模型.mp4
    25.14Contribution与Optimization.mp4
    25.15Digital Marketing.mp4
    25.16Attribution及举例.mp4
    25.17Linear Attribution及两-模型-较分析.mp4
    26.1ROI—投资回报率.mp4
    26.2MER—推广成本营收-.mp4
    26.3CAC—顾客获取成本及其他重要指标.mp4
    26.4STP框架.mp4
    26.5STP举例:地毯纤维.mp4
    26.6市场细分需要收集的数据.mp4
    26.7市场细分的主要步骤及聚类分析举例.mp4
    26.8Case Study:应当选择-个细分市场?.mp4
    26.9目标市场、市场定位及行业前瞻.mp4
    27.1数据处理方法引入.mp4
    27.2Data Source:Excel.mp4
    27.3Data Source:Delimited format与Fixed length.mp4
    27.4Data File与Web Data.mp4
    27.5Data Source:RDBMS.mp4
    27.6Data Types(一).mp4
    27.7Data Types(二).mp4
    27.8Missing Data与Data Quality Issues.mp4
    27.9Data Preparation与Data Cleansing.mp4
    27.10Missing Data与Transformation.mp4
    27.11Web Data Preparation.mp4
    27.12Data Cleaning:Airbnb Listings(一).mp4
    27.13Data Cleaning:Airbnb Listings(二).mp4
    27.14Data Cleaning:Airbnb Listings(三).mp4
    28.1Sklearn介绍.mp4
    28.2什么是机器学习.mp4
    28.3General Learning Models-Supervised(一).mp4
    28.4General Learning Models-Supervised(二).mp4
    28.5General Learning Models-Unsupervised.mp4
    28.6Part1.Feature Extraction.mp4
    28.7Part2.Learning Algorithms.mp4
    28.8Sklearn安装.mp4
    28.9Dataset.mp4
    28.10Feature Extraction(一).mp4
    28.11Feature Extraction(二).mp4
    28.12答疑:Sklearn安装.mp4
    28.13Feature selection.mp4
    28.14Learning algorithm(一).mp4
    28.15Learning algorithm(二).mp4
    28.16Extreme Example.mp4
    28.17Model evaluation&selection及回顾.mp4
    29.1课程引入.mp4
    29.2什么是模型?.mp4
    29.3什么是回归分析及其分类.mp4
    29.4什么是线性回归?.mp4
    29.5自变量与因变量.mp4
    29.6线性回归模型及所需满足的条件.mp4
    29.7线性回归前提假设.mp4
    29.8残差Residual及系数的估计.mp4
    29.9模型的诊断(一).mp4
    29.10模型的诊断(二).mp4
    29.11线性回归分析步骤.mp4
    29.12Python实例:利用数据点建立模型.mp4
    29.13如何求线性方程斜率与截距.mp4
    29.14如何评价模型的好坏.mp4
    29.15Linear Regression on Boston housing dataset.mp4
    29.16Method 1:sklearn package.mp4
    29.17Method 2:statsmodels package.mp4
    30.1课程引入.mp4
    30.2监督式vs非监督式机器学习.mp4
    30.3分类vs聚类.mp4
    30.4分类算法vs回归分析.mp4
    30.5为什么线性模型不适用?.mp4
    30.6逻辑回归的前提假设.mp4
    30.7逻辑回归的公式及问题.mp4
    30.8混淆矩阵与ROC曲线.mp4
    30.9模型永远都不是完美的.mp4
    30.10过拟合vs欠拟合与交叉验证.mp4
    30.11逻辑回归分析流程.mp4
    30.12数据导入.mp4
    30.13Data Exploratory.mp4
    30.14Create dummy variables & Feature Selection.mp4
    30.15Implementing the model & Logistic Regression Model Fitting.mp4
    30.16Cross Validation & Confusion Matrix.mp4
    31.1Classification & Clustering Classification vs. Clustering-0223.mp4
    31.2顾客体验Customer Experience-0224.mp4
    31.3定价Pricing-0225.mp4
    31.4SPSS与问卷分析-0226.mp4
    31.5市场研究的基础知识-0227.mp4
    31.6市场营销的研究应用-0228.mp40
    31.7CRM & RFM- 0301.mp4
    31.8CRM & RFM -0302.mp4
    31.9新业务开发及销售运营管理-0303.mp4
    31.10Growth hacking-0304.mp4
    31.11Growth hacking-0304.mp4
    31.12MySQL 1 -0305.mp4
    31.13MySQL 1-0305.mp4
    31.14MySQL2 -0306.mp4
    31.15NoSQL Database in Big Data-0307.mp4
    31.16Power BI-0307.mp4
    31.17E-Commerce-0309.mp4
    31.18E-Commerce-0310.mp4
    31.19Gaming Analytics-0312.mp4
    31.20Gaming Analytics-0314.mp4
    31.21感官分析1-0316.mp4
    31.22感官分析2-0316.mp4
    31.23感官分析3-0317.mp4
    31.24感官分析4-0317.mp4
    31.25A-B Testing-0319.mp4
    31.26A-B Testing-0320.mp4
    31.27Capstone-0323.mp4
    31.28Capstone-0324.mp4课件资料

    分享该资料赚金币:当别人从你上方分享的链接访问本页面时,每个访问者你将获得奖励100Java金币。

    集满赞获取该资料:分享后获得50个赞和50个访客,截图给资料售后(qq:990442496),直接获取该资料。

    回复

    使用道具 举报

  • TA的每日心情
    开心
    2019-11-1 11:15
  • 签到天数: 33 天

    [LV.5]常住居民I

    发表于 2019-10-25 15:00:04 | 显示全部楼层
    开始学习了,希望能找份好工作
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    郁闷
    2017-12-31 14:05
  • 签到天数: 8 天

    [LV.3]偶尔看看II

    发表于 2019-10-26 10:38:32 | 显示全部楼层
    不错的资料学习下!!!
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2019-10-23 12:02
  • 签到天数: 49 天

    [LV.5]常住居民I

    发表于 2019-10-27 13:43:01 | 显示全部楼层
    顶一个了
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    2019-11-5 13:37
  • 签到天数: 30 天

    [LV.5]常住居民I

    发表于 2019-10-28 12:42:18 | 显示全部楼层
    回复一下就可以了吗?
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2017-12-17 20:12
  • 签到天数: 1 天

    [LV.1]初来乍到

    发表于 2019-10-29 07:56:46 | 显示全部楼层
    还是看不懂,复杂
    回复 支持 反对

    使用道具 举报

  • TA的每日心情

    3 天前
  • 签到天数: 123 天

    [LV.7]常住居民III

    发表于 2019-10-30 13:02:36 | 显示全部楼层
    好像还不错!
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    2019-6-25 21:07
  • 签到天数: 34 天

    [LV.5]常住居民I

    发表于 2019-10-31 14:30:56 | 显示全部楼层
    好资料正是我想要的。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    郁闷
    2017-4-7 20:12
  • 签到天数: 8 天

    [LV.3]偶尔看看II

    发表于 2019-11-1 04:06:28 | 显示全部楼层
    非常不错,感谢分享!
    回复 支持 反对

    使用道具 举报

  • TA的每日心情

    昨天 12:47
  • 签到天数: 21 天

    [LV.4]偶尔看看III

    发表于 2019-11-1 23:36:19 | 显示全部楼层
    支持,赞
    回复 支持 反对

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    .

    QQ|手机版|Java学习者论坛 ( 声明:本站资料整理自互联网,用于Java学习者交流学习使用,对资料版权不负任何法律责任,若有侵权请及时联系客服屏蔽删除 )

    GMT+8, 2019-11-19 17:58 , Processed in 0.520037 second(s), 42 queries .

    Powered by Discuz! X3.4

    © 2001-2017 Comsenz Inc.

    快速回复 返回顶部 返回列表